337844(37)

B. E. (Eighth Semester) Examination, 2020

(New Scheme)

(Mech., Mechatronics Engg. Branch)

COMPUTATIONAL FLUID DYNAMICS

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each questions is compulsory. Attempt any two parts from (b), (c) and (d). The figures in the right hand margin indicate marks.

Unit-I

- 1. (a) What are governing equations of fluid dynamics? 2
 - (b) Discuss briefly the applications of CFD.

7

	(c) Derive the continuity equation in differential form for	
	in compressible flow.	7
	(d) Explain three steps of CFD code in detail	7
	V. IC. V. Fighth Semisters) Examination, 2026	
2.	(a) Classify boundary value problems.	2
	(b) Explain the discretisation of derivatives in brief.	7
	(c) Explain the strong and weak formulation of boundary	
	value problem.	7
	(d) Derive the second-order central differences for mixed	
	derivatives. (using Taylor's series expansion)	7
	Marinum Pass Marks: 28	
	Unit-III	
3.	(a) What is up-wind formulation/scheme?	2
	(b) What are the four basic rules for discretization using	
	Finite Volume method? Explain briefly each rule.	7
	(c) Explain briefly about the principle of Cell Vertex	
	formulation-multistage tune stepping.	7
	(d) Explain Runge-Kutta time stepping in detail.	7
	337844(37)	

[3]

Unit-IV

4.	(a) Wl	hat is meant by Boundary-Layer?	2		
	` /	erive the expression of Crank-Nilcolson method implicit scheme.	7		
		plain different viscous compressible flows with table example.	7		
	(d) Ex	plain briefly the concept of numerical dissipation.	7		
Unit-V					
5.		me at least three grid topologies used in structured d generation.	2		
		plain body fitted grid generation using elliptic type uations.	7		
		eplain C— and H— grid topology with neat etch.	7		
		raw suitable grid and the type of the coordinate stem to investigate flow over an airfoil.	7		